Xast time:
Computed one-loop scattering amplitude
in 44- theory with "cutoff"
$$\Lambda$$
 (Pauli-Villars):
 $\mathcal{M}^{sym} = -i \Lambda + i C \Lambda^2 \Big[\log \Big(\frac{\Lambda^2}{s} \Big) + \log \Big(\frac{\Lambda^2}{s} \Big) + \log \Big(\frac{\Lambda^2}{s} \Big) \Big] + \log \Big(\frac{\Lambda^2}{s} \Big) + \log \Big(\frac{\Lambda^2}{s} \Big) \Big] + \log \Big(\frac{\Lambda^2}{s} \Big) + \log \Big(\frac{\Lambda^2}{$

$$-i\lambda p = -i\lambda + iC\lambda^{2} \left[log\left(\frac{\Lambda^{2}}{S_{-}}\right) + log\left(\frac{\Lambda^{2}}{t_{0}}\right) + log\left(\frac{\Lambda^{2}}{u_{0}}\right) \right] + O(\lambda^{3})$$
(2)

Zet us denote the sum of logarithms in

eqs. (1) and (2) by L and Lo:

$$\mathcal{M} = -i\lambda + iC\lambda^{2}L^{2} + O(\lambda^{3})$$
(3a) $-i\lambda p = -i\lambda + iC\lambda^{2}L_{0} + O(\lambda^{3})$
(3b)

this is how a and ap are related!
Question: How can we express
$$\mathcal{M}$$

in terms of experimentally
measured λp ?
 \rightarrow rearrange (3b) to obtain:
 $-i\lambda = -i\lambda p - i(\lambda^2 L_0 + O(\lambda^3))$
 $= -i\lambda p - i(\lambda^2 L_0 + O(\lambda^3))$ (4)
higher order terms are determined by
plugging (4) into (3b) and solving
for coefficients such that r.h.s = $-i\lambda p$
 \rightarrow plugging (4) into (3a) gives:
 $\mathcal{M} = -i\lambda + i(\lambda^2 L + O(\lambda^3))$
 $= -i\lambda p - i(\lambda^2 L_0 + i(\lambda^2 L_0 + O(\lambda^2)))$ (5)
 \rightarrow we now see that \mathcal{M} is a function
of $L - L_0 = [log(S_0) + log(t_0/t_0) + log(u_0/u)]$
i.e. $\mathcal{M} = -i\lambda p + i(\lambda^2 [log(S_0) + log(t_0) + log(u_0)] + O(\lambda^3)$

Note:

field configurations $\ell(x)$ whose Fourier transform $\ell(k)$ vanishes for $k \ge \Lambda$.

Dimensional regularization
An alternative way to regularize the
scattering amplitude is called
"dimensional regularization"
procedure: When we reach

$$I = \int \frac{d!^{\kappa}}{(2\pi)!^{\kappa}} \frac{1}{(\kappa^2 - c^2 + i\epsilon)^{2}}$$
, we rotate to
Euclidean space and generalize to
D dimensions:
 $I(D) = i \int \frac{dE^{\kappa}}{(2\pi)!^{D}} \frac{1}{(\kappa^2 + c^2)^2}$
 $= i \left[\frac{2\pi}{T} \frac{D/2}{D} \right] \frac{1}{(2\pi)!^{D}} \int_{0}^{1} d\kappa \ \kappa^{D-1} \frac{1}{(\kappa^2 + c^2)^2}$
 \rightarrow changing the integration variable to
 $\kappa^2 + c^2 = c^2/x$, we find
 $\int_{0}^{1} dk \ \kappa^{D-1} \frac{1}{(\kappa^2 + c^2)^2} = \frac{1}{2} c^{D-4} \int dx (1-x)^{D_{n-1}} - D_{n-2}^{2}$
Using the definition of the beta-function,
 $\int_{0}^{1} dx \ x^{\kappa-1} (1-x)^{N-1} = \frac{T(\kappa)T(N)}{T(\kappa + N)}$,

the above integral becomes

$$i \int \frac{dE}{(ATT)} \frac{1}{(K^2 + C^2)^2} = i \frac{1}{(4TT)} T\left(\frac{(4-T)}{2}\right) c^{D-4}$$
As $D \rightarrow 4$, the r.h.s becomes
 $i \frac{1}{(4TT)^2} \left(\frac{2}{(4-T)} - \log c^2 + \log (4TT) - T + O(D-4)\right)$
where $\gamma = 0.577 \cdots$ denotes the
Euler - Mascheroni constant.
 $\rightarrow We$ see that $\log \Lambda^2$ in Pauli-Villars
regularization has been replaced
by $\frac{2}{(4-T)}$
 $\rightarrow when physical quantities (measurable
quantities) are replaced by physical
coupling constants, all such poles
cancel !$

<u>\$4.2</u> Renormalizable versus Nonrenormalizable We saw that in 44 theory, when expressing the scalar-scalar scattering amplitude in terms of the "physical" coupling constant 2p, the dependence on the cutoff A disappears! Question: Was this just a coincidence? For which theories is this possible? -> "renormalizable" versus "nouvenormalizable" Dimensional analysis Let us use units where ti=c=l -> length and time have inverse of the dimension of mass action S= |d' × × appears in path integral as e^{is} -> most be dimensionless

-> 2 has dimension [m]⁴ mass (ar energy) we use notation $[Z] = 4, [X] = -1, [\partial] = 1$ Now consider the scalar field theory $\chi = \frac{1}{2} \left[\left(\partial \varphi \right)^2 - m^2 \varphi^2 \right] - \frac{1}{2} \varphi^{\varphi}$ demand $[(2 \varphi)^2] = 4 \longrightarrow [\varphi] = 1$ $\longrightarrow [\lambda] = 0 \quad ([\lambda] + 4[4] = 4)$ How about the fermion field 4? $\chi = \overline{\psi} i \gamma^{m} \partial_{m} \psi + \cdots$ $\begin{bmatrix} \chi \end{bmatrix} = 4 \longrightarrow \begin{bmatrix} 2 \\ - \end{pmatrix} = \frac{3}{2}$ Looking at Yukawa interaction f474, we see [f] = 0In contrast, for Z=GZ+Y+4 (theory of weak interaction), [G]=-2 since $-2 + 4\left(\frac{3}{2}\right) = 4$

From the Maxwell Lagrangian - 4 Fm Fm, we see $[A_n] = 1$ $\left[eA_{\mu}\overline{\psi}\gamma^{\mu}\psi\right] = 4 \longrightarrow \left[e\right] = 0$ Scattering amplitude blows up Consider Z= i424 + G4444 -> calculating amplitude M for 4-fermi interaction, we find to lowest order: M~G for next order: $M \sim G + CG^2$ result of one-loop since $[G] = -2 \longrightarrow [C] = +2$ Assuming m, Ki « A, can set m=ki=0 -> For dimensional reasons, must have c=12 hence: $\mathcal{M} \sim G + \Lambda^2 G^2$ can also check this by comparing to Feynman diagram $\nu \bigvee^{\nu} \sim G^2 \int d^{\prime} p\left(\frac{1}{p}\right) \left(\frac{1}{p}\right) \sim G^2 \Lambda^2$

-> becomes a for
$$\Lambda = \infty$$

"nonvenormalizable"
Remark:
The four-fermion interaction amplitude
 $M \sim G + G^2 \Lambda^2$ signals that the
theory is only valid below $\Lambda - (1G)^{\frac{1}{2}}$
as at that energy perturbation theory
breaks down!